Apatite Glass-Ceramics: A Review

نویسندگان

  • Tomas Duminis
  • Saroash Shahid
  • Robert Graham Hill
چکیده

This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics, and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid–liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical, and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability; therefore, the review provides a direction for future research in the field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation on Mechanical Properties of Apatite-Wollastonite-Diopside Glass-Ceramics Composites

Apatite-wollastonite (A-W)-phlogopite glass-ceramic is considered to be difficult to resorb, but often, it has been incorporated in particulate form to create new bioactive composites for potential maxillofacial applications. With various compositions, the present work has attempted to prepare apatite-wollastonite (A-W)-phlogopite glass ceramic composites, by applying sintering. Here, three-poi...

متن کامل

Properties and Crystallization Phenomena in Li2Si2O5–Ca5(PO4)3F and Li2Si2O5–Sr5(PO4)3F Glass–Ceramics Via Twofold Internal Crystallization

The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass-ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 gl...

متن کامل

Effect of crystallization on apatite-layer formation of bioactive glass 45S5.

The bioactive glass 45S5 was crystallized to 8-100 vol % of crystals by thermal treatments from 550-680 degrees C. The micro-structure of the glass-ceramics had a very uniform crystal size, ranging from 8 to 20 microns. Fourier-transform infrared (FTIR) spectroscopy was used to determine the rate of hydroxycarbonate apatite (HCA) formation that occurs on bioactive glass and glass-ceramic implan...

متن کامل

In vitro evaluation of apatite/wollastonite glass–ceramic nano biocoatings on 316 alloys by plasma-sprayed

Among bioactive ceramics, the apatite/wollastonite (A/W) glass ceramic, containing apatite and wollastonite crystals in the glassy matrix, has been largely studied because of good bioactivity and used in some fields of medicine, especially in orthopedics and dentistry. However, medical applications of bioceramic are limited to non-load bearing applications because of their poor mechanical prope...

متن کامل

Mechanical Properties and Biological Responses of Bioactive Glass Ceramics Processed Using Indirect Sls

This paper will report on research which aims to generate bone replacement components by processing bioactive glass-ceramic powders using indirect selective laser sintering. The indirect SLS route has been chosen as it offers the ability to tailor the shape of the implant to the implantation site, and two bioactive glass ceramic materials have been processed through this route: apatite-mullite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017